Sesquiterpene Lactone Glycosides from *Carpesium macrocephalum*

Chao YANG¹, Yan Ping SHI², Xing WANG¹, Zhong Jian JIA¹*

¹Department of Chemistry, Lanzhou University, Lanzhou 730000 ²Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

Abstract: Two new sesquiterpene lactone glycosides were isolated from the seeds of *Carpesium macrocephalum*. Their structures were elucidated as 2 -O- -D-glucopyranosy-5 , 11 H-eudesma-4 (15)-en-12, 8 -olide and 2 -O- -D-glucopyranosy-5 H-eudesma-4 (15), 11 (13)-dien-12, 8 -olide by spectral methods (HRMS, 1 D and 2 D NMR).

Keywords: Carpesium macrocephalum, Compositae, eudesmanolide, sesquiterpene lactone gly-cosides.

No previous work on the sesquiterpene lactone glycosides of the genus *Carpesium* has been found up to now. Two new sesquiterpene lactone glycosides 1 and 2 were isolated from *Carpesium macrocephalum*. Here we report the structure elucidation of them.

Compound 1, $C_{21}H_{32}O_8$ (HRMS: revealed M+Na = 435.1996, requires 435.1989), was isolated as colorless crystal, mp: 205-207°C, $[]_D^{20}$ +17.9 (c 0.56, MeOH). In its ¹H and ¹³C NMR spectra (**Table 1**) the typical signals for a β -D-glucopyranoside were readily recognized, which was confirmed by PC after acid hydrolysis of **1**. The remaining signals of the aglycone are similar to those of the known eudesmanoild, 2 α -hydroxy-5 α , 11 H-eudesma-4 (15)-en-12, 8 β -olide¹. Structural elucidation was confirmed by ¹H-¹H COSY, HMQC and HMBC spectra. The attachment of glucose to the hydroxyl at C-2 is deduced by the long range coupling between H-1' and C-2. The large coupling constants of H-2 (J_{2 β , 1 α} = J_{2 β , 3 α} = 12.5Hz) confirmed the 2-hydroxy was in -orientation. Hence, the structure of the eudesmanoild glucoside was thus assigned to be **1**.

Compound 2, $C_{21}H_{30}O_8$ (FABMS: m/z 433[M+Na]⁺), was isolated as colorless

^{*} E-mail: Zhengrl@lzu.edu.cn

Chao YANG et al.

crystal, mp: 186-188°C. Its ¹H and ¹³C NMR spectra (**Table 1**) were similar to those of **1** except that the 11 -oriented methyl -lactone group ($\delta_C = 182.0$, C; $\delta_H = 2.93$ dq, $\delta_C = 42.8$, CH; $\delta_H = 1.18$ d, $\delta_C = 9.5$, CH₃) in **1** was replaced by an -methylene- -lactone group ($\delta_C = 173.0$, C; $\delta_C = 144.0$, C; $\delta_H = 6.06$, 5.70, brs, $\delta_C = 120.9$, CH₂). So the structure of **2** was identified as 2 -O- -D-glucopyranosy-5 H-eudesma-4(15), 11(13)- dien-12, 8\beta-olide.

Table 1 1 H, 13 C NMR(DEPT) and HMBC data of 1 and 2 (CD₃OD, TMS, δ_{ppm})

NO.	$^{1}\text{H}(\alpha/\beta)$	$^{13}C(DEPT)$	HMBC(C/H)	$^{1}\text{H}(\alpha/\beta)$	¹³ C (DEPT)
	1	1	1	2	2
1	1.25(br. dd, 12.5,	48.5 (CH2)	C-1/H-14	1.24 (t, 12, 12)/	48.4 (CH2)
	12.5)/1.99 (ddd, 2, 5,			2.00 (ddd, 2, 5, 12)	
	12.5)				
2	3.87 [*] (m)	76.0 (CH)	C-2/H-3, 1α, 1'	3.85*(m)	75.8 (CH)
3	2.11 [*] (t, 12.5, 12.5)/	45.5 (CH2)	C-3/H-15	2.12* (t, 12, 12)/	45.5 (CH2)
	2.79 (ddd, 2, 5, 12.5)			2.79 (ddd, 2, 5, 12)	
4	-	148.4 (C)	C-4/H-3, 5	-	148.1 (C)
5	1.88 (br. d, 12.5)	46.9 (CH)	С-5/Н-3β, 9β, 15,	1.94 (br.d, 13)	46.5 (CH)
			14		
6	1.63 [*] (m)/1.06 (ddd,	22.2 (CH2)	C-6/H-11	1.82 (ddd, 2, 6,	28.5 (CH2)
	12.5, 12.5, 12.5)			13)/1.26 (ddd, 13,	
				13, 13)	
7	2.49 (m, 4, 7, 12.5)	41.6 (CH)	C-7/H-9β, 11, 13	3.10 (ddd, 4, 7, 13)	41.5 (CH)
8	4.52 (ddd, 2, 4, 4.5)	79.6 (CH)	C-8/H-9β	4.56 (ddd, 2, 4, 5)	78.8 (CH)
9	1.58 (dd, 4.5, 15.5)/	42.2 (CH2)	C-9/H-14	1.63 (dd, 5, 15.5)/	41.9 (CH2)
	2.16* (dd, 2, 15.5)			2.20 (br. d, 15.5)	
10	-	35.2 (C)	C-10/H-1α, 5, 9,	-	34.7 (C)
			14		
11	2.93 (dq, 7, 7)	42.8 (CH)	C-11/H-13	-	144.0 (C)
12	-	182.0 (C)	C-12/H-11, 13	-	173.0 (C)
13	1.18 (d, 7)	9.5 (CH3)	C-13/H-11	6.06, 5.70 (br.s)	120.9 (CH2)
14	0.78 (s)	19.1 (CH3)	C-14/H-1α	0.80 (s)	18.9 (CH3)
15	4.89, 4.62 (br.s)	109.2(CH2)	C-15/H-3	4.87, 4.59 (br.s)	109.5(CH2)
1′	4.34 (d, 8)	102.9 (CH)	C-1′/H-2´	4.34 (d, 8)	102.9 (CH)
2´	3.12 (t, 8.2)	75.1 (CH)	-	3.12 (t, 8.2)	75.1 (CH)
3´	3.34* (t, 8.8)	78.1 (CH)	C-3'/H-2', 5'	3.34* (t, 8.8)	78.1 (CH)
4´	3.30* (t, 8.8)	71.6 (CH)	C-4'/H-3'	3.30* (t, 8.8)	71.6 (CH)
5´	3.26* (m, 2, 5.8)	77.9 (CH)	C-5'/H-4'	3.26* (m, 2, 5.8)	77.9 (CH)
6´	3.85* (dd, 2, 11.8),	62.8 (CH2)	-	3.85* (dd, 2, 11.8),	62.8 (CH2)
	3.65 (dd, 5.8, 11.8)			3.65 (dd, 5.8, 11.8)	

a. Signal multiplicity and coupling constants (Hz) are in parentheses; b. *Overlapping signals.

Acknowledgment

We are grateful for the NNSFC (No. 29972017), and the FMEC (No. 98073003).

Reference

1. G. Topcu, S. Öksüz, H. L. Shieh, et al., Phytochemistry, 1993, 33 (2), 407.

Received 25 June, 2001